Software Requirements
Developer Best Practices

Software EstimationBuilding Software TeamsClean
C++User Stories AppliedHow We Test Software at
MicrosoftRequirements Engineering for Software and
Systems, Second EditionCode CompleteSoftware
EngineeringVisual Models for Software
RequirementsSeriously Good
SoftwareSubscribedCode SimplicitySoftware
Engineering Best PracticesExtreme Programming
ExplainedMastering the Requirements
ProcessSoftware Requirement PatternsArchitecting for
ScaleSoftware Configuration Management
PatternsVisual Models for Software
RequirementsSoftware RequirementsThe
Requirements Engineering HandbookMore About
Software RequirementsManaging Software
RequirementsSoftware RequirementsAgile Software
RequirementsScaling Software AgilityDetermining
Project RequirementsScenario-Focused
EngineeringSoftware Engineering at GoogleBusiness
Analysis for PractitionersSoftware for Dependable
SystemsAgile Project Management with
KanbanBuilding Evolutionary ArchitecturesSoftware
Requirements EngineeringBusiness Analysis for
Practitioners: A Practice Guide provides a foundation
for the practicalAgile Software DevelopmentAdaptive
CodeSoftware Project Survival GuideClean
CodeSystem Engineering Analysis, Design, and
Development

Page 1/36



Software Estimation

Use Kanban to maximize efficiency, predictability,
quality, and value With Kanban, every minute you
spend on a software project can add value for
customers. One book can help you achieve this goal:
Agile Project Management with Kanban. Author Eric
Brechner pioneered Kanban within the Xbox
engineering team at Microsoft. Now he shows you
exactly how to make it work for your team. Think of
this book as "Kanban in a box": open it, read the
quickstart guide, and you're up and running fast. As
you gain experience, Brechner reveals powerful
techniques for right-sizing teams, estimating, meeting
deadlines, deploying components and services,
adapting or evolving from Scrum or traditional
Waterfall, and more. For every step of your journey,
you'll find pragmatic advice, useful checklists, and
actionable lessons. This truly is "Kanban in a box": all
you need to deliver breakthrough value and quality.
Use Kanban techniques to: Start delivering continuous
value with your current team and project Master five
quick steps for completing work backlogs Plan and
staff new projects more effectively Minimize work in
progress and quickly adjust to change Eliminate
artificial meetings and prolonged stabilization
Improve and enhance customer engagement Visualize
workflow and fix revealed bottlenecks Drive quality
upstream Integrate Kanban into large projects
Optimize sustained engineering (contributed by James
Waletzky) Expand Kanban beyond software
development

Page 2/36



Building Software Teams

Thoroughly reviewed and eagerly anticipated by the
agile community, User Stories Applied offers a
requirements process that saves time, eliminates
rework, and leads directly to better software. The best
way to build software that meets users' needs is to
begin with "user stories": simple, clear, brief
descriptions of functionality that will be valuable to
real users. In User Stories Applied, Mike Cohn
provides you with a front-to-back blueprint for writing
these user stories and weaving them into your
development lifecycle. You'll learn what makes a
great user story, and what makes a bad one. You'll
discover practical ways to gather user stories, even
when you can't speak with your users. Then, once
you've compiled your user stories, Cohn shows how to
organize them, prioritize them, and use them for
planning, management, and testing. User role
modeling: understanding what users have in common,
and where they differ Gathering stories: user
interviewing, questionnaires, observation, and
workshops Working with managers, trainers,
salespeople and other "proxies" Writing user stories
for acceptance testing Using stories to prioritize, set
schedules, and estimate release costs Includes end-of-
chapter practice questions and exercises User Stories
Applied will be invaluable to every software
developer, tester, analyst, and manager working with
any agile method: XP, Scrum or even your own home-
grown approach.

Clean C++

Page 3/36



Good software design is simple and easy to
understand. Unfortunately, the average computer
program today is so complex that no one could
possibly comprehend how all the code works. This
concise guide helps you understand the fundamentals
of good design through scientific laws—principles you
can apply to any programming language or project
from here to eternity. Whether you’'re a junior
programmer, senior software engineer, or non-
technical manager, you’'ll learn how to create a sound
plan for your software project, and make better
decisions about the pattern and structure of your
system. Discover why good software design has
become the missing science Understand the ultimate
purpose of software and the goals of good design
Determine the value of your design now and in the
future Examine real-world examples that demonstrate
how a system changes over time Create designs that
allow for the most change in the environment with the
least change in the software Make easier changes in
the future by keeping your code simpler now Gain
better knowledge of your software’s behavior with
more accurate tests

User Stories Applied

Widely considered one of the best practical guides to
programming, Steve McConnell’s original CODE
COMPLETE has been helping developers write better
software for more than a decade. Now this classic
book has been fully updated and revised with leading-
edge practices—and hundreds of new code
samples—illustrating the art and science of software
Page 4/36



construction. Capturing the body of knowledge
available from research, academia, and everyday
commercial practice, McConnell synthesizes the most
effective techniques and must-know principles into
clear, pragmatic guidance. No matter what your
experience level, development environment, or
project size, this book will inform and stimulate your
thinking—and help you build the highest quality code.
Discover the timeless techniques and strategies that
help you: Design for minimum complexity and
maximum creativity Reap the benefits of collaborative
development Apply defensive programming
techniques to reduce and flush out errors Exploit
opportunities to refactor—or evolve—code, and do it
safely Use construction practices that are right-weight
for your project Debug problems quickly and
effectively Resolve critical construction issues early
and correctly Build quality into the beginning, middle,
and end of your project

How We Test Software at Microsoft

Requirements Engineering for Software
and Systems, Second Edition

Software Development is moving towards a more
agile and more flexible approach. It turns out that the
traditional "waterfall" model is not supportive in an
environment where technical, financial and strategic
constraints are changing almost every day. But what
is agility? What are today’s major approaches? And
especially: What is the impact of agile development
Page 5/36



principles on the development teams, on project
management and on software architects? How can
large enterprises become more agile and improve
their business processes, which have been existing
since many, many years? What are the limitations of
Agility? And what is the right balance between reliable
structures and flexibility? This book will give answers
to these questions. A strong emphasis will be on real
life project examples, which describe how
development teams have moved from a waterfall
model towards an Agile Software Development
approach.

Code Complete

Every day, companies struggle to scale critical
applications. As traffic volume and data demands
increase, these applications become more
complicated and brittle, exposing risks and
compromising availability. This practical guide shows
IT, devops, and system reliability managers how to
prevent an application from becoming slow,
inconsistent, or downright unavailable as it grows.
Scaling isn’t just about handling more users; it’s also
about managing risk and ensuring availability. Author
Lee Atchison provides basic techniques for building
applications that can handle huge quantities of traffic,
data, and demand without affecting the quality your
customers expect. In five parts, this book explores:
Availability: learn techniques for building highly
available applications, and for tracking and improving
availability going forward Risk management: identify,
mitigate, and manage risks in your application, test

Page 6/36



your recovery/disaster plans, and build out systems
that contain fewer risks Services and microservices:
understand the value of services for building
complicated applications that need to operate at
higher scale Scaling applications: assign services to
specific teams, label the criticalness of each service,
and devise failure scenarios and recovery plans Cloud
services: understand the structure of cloud-based
services, resource allocation, and service distribution

Software Engineering

Often referred to as the “black art” because of its
complexity and uncertainty, software estimation is
not as difficult or puzzling as people think. In fact,
generating accurate estimates is
straightforward—once you understand the art of
creating them. In his highly anticipated book,
acclaimed author Steve McConnell unravels the
mystery to successful software estimation—distilling
academic information and real-world experience into
a practical guide for working software professionals.
Instead of arcane treatises and rigid modeling
techniques, this guide highlights a proven set of
procedures, understandable formulas, and heuristics
that individuals and development teams can apply to
their projects to help achieve estimation proficiency.
Discover how to: Estimate schedule and cost—or
estimate the functionality that can be delivered within
a given time frame Avoid common software
estimation mistakes Learn estimation techniques for
you, your team, and your organization * Estimate
specific project activities—including development,

Page 7/36



management, and defect correction Apply estimation
approaches to any type of project—small or large,
agile or traditional Navigate the shark-infested
political waters that surround project estimates When
many corporate software projects are failing,
McConnell shows you what works for successful
software estimation.

Visual Models for Software Requirements

Summary Serious developers know that code can
always be improved. With each iteration, you make
optimizations—small and large—that can have a huge
impact on your application’s speed, size, resilience,
and maintainability. In Seriously Good Software: Code
that Works, Survives, and Wins, author, teacher, and
Java expert Marco Faella teaches you techniques for
writing better code. You’'ll start with a simple
application and follow it through seven careful
refactorings, each designed to explore another
dimension of quality. Purchase of the print book
includes a free eBook in PDF, Kindle, and ePub
formats from Manning Publications. About the
technology Great code blends the skill of a
programmer with the time-tested techniques and best
practices embraced by the entire development
community. Although each application has its own
context and character, some dimensions of quality
are always important. This book concentrates on eight
pillars of seriously good software: speed, memory
usage, reliability, readability, thread safety,
generality, and elegance. The Java-based examples
demonstrate techniques that apply to any OO

Page 8/36



language. About the book Seriously Good Software is
a handbook for any professional developer serious
about improving application quality. It explores
fundamental dimensions of code quality by enhancing
a simple implementation into a robust, professional-
quality application. Questions, exercises, and Java-
based examples ensure you’ll get a firm grasp of the
concepts as you go. When you finish the last version
of the book’s central project, you’'ll be able to
confidently choose the right optimizations for your
code. What's inside Evaluating software qualities
Assessing trade-offs and interactions Fulfilling
different objectives in a single task Java-based
exercises you can apply in any OO language About
the reader For web developers comfortable with
JavaScript and HTML. About the author Marco Faella
teaches advanced programming at a major Italian
university. His published work includes peer-reviewed
research articles, a Java certification manual, and a
video course. Table of Contents *Part 1: Preliminaries
* 1 Software qualities and a problem to solve 2
Reference implementation *Part 2: Software
Qualities* 3 Need for speed: Time efficiency 4
Precious memory: Space efficiency 5 Self-conscious
code: Reliability through monitoring 6 Lie to me:
Reliability through testing 7 Coding aloud: Readability
8 Many cooks in the kitchen: Thread safety 9 Please
recycle: Reusability

Seriously Good Software

Software Engineering: Architecture-driven Software
Development is the first comprehensive guide to the

Page 9/36



underlying skills embodied in the IEEE's Software
Engineering Body of Knowledge (SWEBOK) standard.
Standards expert Richard Schmidt explains the
traditional software engineering practices recognized
for developing projects for government or corporate
systems. Software engineering education often lacks
standardization, with many institutions focusing on
implementation rather than design as it impacts
product architecture. Many graduates join the
workforce with incomplete skills, leading to software
projects that either fail outright or run woefully over
budget and behind schedule. Additionally, software
engineers need to understand system engineering
and architecture—the hardware and peripherals their
programs will run on. This issue will only grow in
importance as more programs leverage parallel
computing, requiring an understanding of the parallel
capabilities of processors and hardware. This book
gives both software developers and system engineers
key insights into how their skillsets support and
complement each other. With a focus on these key
knowledge areas, Software Engineering offers a set of
best practices that can be applied to any industry or
domain involved in developing software products. A
thorough, integrated compilation on the engineering
of software products, addressing the majority of the
standard knowledge areas and topics Offers best
practices focused on those key skills common to
many industries and domains that develop software
Learn how software engineering relates to systems
engineering for better communication with other
engineering professionals within a project
environment

Page 10/36



Subscribed

Proven techniques for software engineering success
This in-depth volume examines software engineering
topics that are not covered elsewhere: the question of
why software engineering has developed more than
2,500 programming languages; problems with
traditional definitions of software quality; and
problems with common metrics, "lines of code," and
"cost per defect" that violate standard economic
assumptions. The book notes that a majority of "new"
projects are actually replacements for legacy
applications, illustrating that data mining for lost
requirements should be a standard practice. Difficult
social engineering issues are also covered, such as
how to minimize harm from layoffs and downsizing.
Software Engineering Best Practices explains how to
effectively plan, size, schedule, and manage software
projects of all types, using solid engineering
procedures. It details proven methods, from initial
requirements through 20 years of maintenance.
Portions of the book have been extensively reviewed
by key engineers from top companies, including IBM,
Microsoft, Unisys, and Sony. Manage Agile,
hierarchical, matrix, and virtual software development
teams Optimize software quality using JAD, OFD, TSP,
static analysis, inspections, and other methods with
proven success records Use high-speed functional
metrics to assess productivity and quality levels Plan
optimal organization, from small teams through more
than 1,000 personnel

Code Simplicity

Page 11/36



Good requirements do not come from a tool, or from a
customer interview. They come from a repeatable set
of processes that take a project from the early idea
stage through to the creation of an agreed-upon
project and product scope between the customer and
the developer.From enterprise analysis and planning
requirements gathering to documentation,

Software Engineering Best Practices

Looks at the principles and clean code, includes case
studies showcasing the practices of writing clean
code, and contains a list of heuristics and “smells"
accumulated from the process of writing clean code.

Extreme Programming Explained

As requirements engineering continues to be
recognized as the key to on-time and on-budget
delivery of software and systems projects, many
engineering programs have made requirements
engineering mandatory in their curriculum. In
addition, the wealth of new software tools that have
recently emerged is empowering practicing engineers
to improve their requirements engineering habits.
However, these tools are not easy to use without
appropriate training. Filling this need, Requirements
Engineering for Software and Systems, Second Edition
has been vastly updated and expanded to include
about 30 percent new material. In addition to new
exercises and updated references in every chapter,
this edition updates all chapters with the latest

applied research and industry practices. It also
Page 12/36



presents new material derived from the experiences
of professors who have used the text in their
classrooms. Improvements to this edition include: An
expanded introductory chapter with extensive
discussions on requirements analysis, agreement, and
consolidation An expanded chapter on requirements
engineering for Agile methodologies An expanded
chapter on formal methods with new examples An
expanded section on requirements traceability An
updated and expanded section on requirements
engineering tools New exercises including ones
suitable for research projects Following in the
footsteps of its bestselling predecessor, the text
illustrates key ideas associated with requirements
engineering using extensive case studies and three
common example systems: an airline baggage
handling system, a point-of-sale system for a large
pet store chain, and a system for a smart home. This
edition also includes an example of a wet well
pumping system for a wastewater treatment station.
With a focus on software-intensive systems, but
highly applicable to non-software systems, this text
provides a probing and comprehensive review of
recent developments in requirements engineering in
high integrity systems.

Mastering the Requirements Process

Why does poor software quality continue to plague
enterprises of all sizes in all industries? Part of the
problem lies with the process, rather than individual
developers. This practical guide provides ten best
practices to help team leaders create an effective

Page 13/36



working environment through key adjustments to
their process. As a follow-up to their popular book,
Building Maintainable Software, consultants with the
Software Improvement Group (SIG) offer critical
lessons based on their assessment of development
processes used by hundreds of software teams. Each
practice includes examples of goalsetting to help you
choose the right metrics for your team. Achieve
development goals by determining meaningful
metrics with the Goal-Question-Metric approach
Translate those goals to a verifiable Definition of Done
Manage code versions for consistent and predictable
modification Control separate environments for each
stage in the development pipeline Automate tests as
much as possible and steer their guidelines and
expectations Let the Continuous Integration server do
much of the hard work for you Automate the process
of pushing code through the pipeline Define
development process standards to improve
consistency and simplicity Manage dependencies on
third party code to keep your software consistent and
up to date Document only the most necessary and
current knowledge

Software Requirement Patterns

Write maintainable, extensible, and durable software
with modern C++. This book is a must for every
developer, software architect, or team leader who is
interested in good C++ code, and thus also wants to
save development costs. If you want to teach yourself
about writing clean C++, Clean C++ is exactly what
you need. It is written to help C++ developers of all

Page 14/36



skill levels and shows by example how to write
understandable, flexible, maintainable, and efficient
C++ code. Even if you are a seasoned C++
developer, there are nuggets and data points in this
book that you will find useful in your work. If you don't
take care with your code, you can produce a large,
messy, and unmaintainable beast in any
programming language. However, C++ projects in
particular are prone to be messy and tend to slip into
bad habits. Lots of C++ code that is written today
looks as if it was written in the 1980s. It seems that
C++ developers have been forgotten by those who
preach Software Craftsmanship and Clean Code
principles. The Web is full of bad, but apparently very
fast and highly optimized C++ code examples, with
cruel syntax that completely ignores elementary
principles of good design and well-written code. This
book will explain how to avoid this scenario and how
to get the most out of your C++ code. You'll find your
coding becomes more efficient and, importantly, more
fun. What You'll Learn Gain sound principles and rules
for clean coding in C++ Carry out test driven
development (TDD) Discover C++ design patterns
and idioms Apply these design patterns Who This
Book Is For Any C++ developer and software engineer
with an interest in producing better code.

Architecting for Scale

Praise for the first edition: “This excellent text will be
useful to everysystem engineer (SE) regardless of the
domain. It covers ALLrelevant SE material and does so
in a very clear, methodicalfashion. The breadth and

Page 15/36



depth of the author's presentation ofSE principles and
practices is outstanding.” -Philip Allen This textbook
presents a comprehensive, step-by-step guide
toSystem Engineering analysis, design, and
development via anintegrated set of concepts,
principles, practices, andmethodologies. The methods
presented in this text apply to any typeof human
system -- small, medium, and large organizational
systemsand system development projects delivering
engineered systems orservices across multiple
business sectors such as medical,transportation,
financial, educational, governmental, aerospace
anddefense, utilities, political, and charity, among
others. Provides a common focal point for
“bridgingthe gap” between and unifying System
Users, System Acquirers,multi-discipline System
Engineering, and Project, Functional, andExecutive
Management education, knowledge, and decision-
making fordeveloping systems, products, or services
Each chapter provides definitions of key
terms,guiding principles, examples, author’s notes,
real-worldexamples, and exercises, which highlight
and reinforce key SE&Dconcepts and practices
Addresses concepts employed in Model-
BasedSystems Engineering (MBSE), Model-Driven
Design (MDD), UnifiedModeling Language (UMLTM) /
Systems Modeling Language(SysMLTM), and
Agile/Spiral/V-Model Development such asuser needs,
stories, and use cases analysis;
specificationdevelopment; system architecture
development; User-Centric SystemDesign (UCSD);
interface definition & control; systemintegration &
test; and Verification & Validation(V&V)
Highlights/introduces Paaglg?gf\slGZ 1st Century



SystemsEngineering & Development (SE&D)
paradigm that is easy tounderstand and implement.
Provides practices that are critical stagingpoints for
technical decision making such as Technical
StrategyDevelopment; Life Cycle requirements;
Phases, Modes, & States;SE Process; Requirements
Derivation; System ArchitectureDevelopment, User-
Centric System Design (UCSD); EngineeringStandards,
Coordinate Systems, and Conventions; et al.
Thoroughly illustrated, with end-of-chapter exercises
andnumerous case studies and examples, Systems
EngineeringAnalysis, Design, and Development,
Second Edition is a primarytextbook for multi-
discipline, engineering, system analysis, andproject
management undergraduate/graduate level students
and avaluable reference for professionals.

Software Configuration Management
Patterns

Visual Models for Software Requirements

Today, software engineers need to know not only how
to program effectively but also how to develop proper
engineering practices to make their codebase
sustainable and healthy. This book emphasizes this
difference between programming and software
engineering. How can software engineers manage a
living codebase that evolves and responds to
changing requirements and demands over the length
of its life? Based on their experience at Google,
software engineers Titus Winters and Hyrum Wright,
Page 17/36



along with technical writer Tom Manshreck, present a
candid and insightful look at how some of the world’s
leading practitioners construct and maintain software.
This book covers Google’s unique engineering culture,
processes, and tools and how these aspects
contribute to the effectiveness of an engineering
organization. You'll explore three fundamental
principles that software organizations should keep in
mind when designing, architecting, writing, and
maintaining code: How time affects the sustainability
of software and how to make your code resilient over
time How scale affects the viability of software
practices within an engineering organization What
trade-offs a typical engineer needs to make when
evaluating design and development decisions

Software Requirements

Gathering customer requirements is a key activity for
developing software that meets the customer's
needs. A concise and practical overview of everything
a requirement's analyst needs to know about
establishing customer requirements, this first-of-its-
kind book is the perfect desk guide for systems or
software development work. The book enables
professionals to identify the real customer
requirements for their projects and control changes
and additions to these requirements. This unique
resource helps practitioners understand the
importance of requirements, leverage effective
requirements practices, and better utilize resources.
The book also explains how to strengthen
interpersonal relationships and communications which

Page 18/36



are major contributors to project effectiveness.
Moreover, analysts find clear examples and checklists
to help them implement best practices.

The Requirements Engineering
Handbook

The software development ecosystem is constantly
changing, providing a constant stream of new tools,
frameworks, techniques, and paradigms. Over the
past few years, incremental developments in core
engineering practices for software development have
created the foundations for rethinking how
architecture changes over time, along with ways to
protect important architectural characteristics as it
evolves. This practical guide ties those parts together
with a new way to think about architecture and time.

More About Software Requirements

“We need better approaches to understanding and
managing software requirements, and Dean provides
them in this book. He draws ideas from three very
useful intellectual pools: classical management
practices, Agile methods, and lean product
development. By combining the strengths of these
three approaches, he has produced something that
works better than any one in isolation.” -From the
Foreword by Don Reinertsen, President of Reinertsen
& Associates; author of Managing the Design Factory;
and leading expert on rapid product development
Effective requirements discovery and analysis is a
critical best practice for serious application

Page 19/36



development. Until now, however, requirements and
Agile methods have rarely coexisted peacefully. For
many enterprises considering Agile approaches, the
absence of effective and scalable Agile requirements
processes has been a showstopper for Agile adoption.
In Agile Software Requirements, Dean Leffingwell
shows exactly how to create effective requirements in
Agile environments. Part | presents the “big picture”
of Agile requirements in the enterprise, and describes
an overall process model for Agile requirements at
the project team, program, and portfolio levels Part Il
describes a simple and lightweight, yet
comprehensive model that Agile project teams can
use to manage requirements Part Ill shows how to
develop Agile requirements for complex systems that
require the cooperation of multiple teams Part IV
guides enterprises in developing Agile requirements
for ever-larger “systems of systems,” application
suites, and product portfolios This book will help you
leverage the benefits of Agile without sacrificing the
value of effective requirements discovery and
analysis. You'll find proven solutions you can apply
right now-whether you're a software developer or
tester, executive, project/program manager,
architect, or team leader.

Managing Software Requirements

Introduction to tutorial: software requirements
engineering; Introductions, issues and terminology;
System and software systems engineering; Software
requirements analysis and specifications; Software
requirements methodologies and tools; Requirements

Page 20/36



and quality management; Software system
engineering process models; Appendix; Author's
biographies. \t.

Software Requirements

Looks at a successful software project and provides
details for software development for clients using
object-oriented design and programming.

Agile Software Requirements

Write code that can adapt to changes. By applying
this book’s principles, you can create code that
accommodates new requirements and unforeseen
scenarios without significant rewrites. Gary McLean
Hall describes Agile best practices, principles, and
patterns for designing and writing code that can
evolve more quickly and easily, with fewer errors,
because it doesn’t impede change. Now revised,
updated, and expanded, Adaptive Code, Second
Edition adds indispensable practical insights on
Kanban, dependency inversion, and creating reusable
abstractions. Drawing on over a decade of Agile
consulting and development experience, McLean Hall
has updated his best-seller with deeper coverage of
unit testing, refactoring, pure dependency injection,
and more. Master powerful new ways to: « Write code
that enables and complements Scrum, Kanban, or any
other Agile framework « Develop code that can
survive major changes in requirements ¢ Plan for
adaptability by using dependencies, layering,
interfaces, and design patterns * Perform unit testing
Page 21/36



and refactoring in tandem, gaining more value from
both ¢ Use the “golden master” technique to make
legacy code adaptive ¢ Build SOLID code with single-
responsibility, open/closed, and Liskov substitution
principles « Create smaller interfaces to support more-
diverse client and architectural needs * Leverage
dependency injection best practices to improve code
adaptability « Apply dependency inversion with the
Stairway pattern, and avoid related anti-patterns
About You This book is for programmers of all skill
levels seeking more-practical insight into design
patterns, SOLID principles, unit testing, refactoring,
and related topics. Most readers will have
programmed in C#, Java, C++, or similar object-
oriented languages, and will be familiar with core
procedural programming techniques.

Scaling Software Agility

The first edition of "Extreme Programming Explained"
is a classic. It won awards for its then-radical ideas for
improving small-team development, such as having
developers write automated tests for their own code
and having the whole team plan weekly. Much has
changed in five years. This completely rewritten
second edition expands the scope of XP to teams of
any size by suggesting a program of continuous
improvement based on: five core values consistent
with excellence in software development; eleven
principles for putting those values into action; and,
thirteen primary and eleven corollary practices to
help you push development past its current business
and technical limitations. Whether you have a small

Page 22/36



team that is already closely aligned with your
customers or a large team in a gigantic or
multinational organization, you will find in these
pages a wealth of ideas to challenge, inspire, and
encourage you and your team members to
substantially improve your software development.

Determining Project Requirements

No matter how much instruction you’ve had on
managing software requirements, there’s no
substitute for experience. Too often, lessons about
requirements engineering processes lack the no-
nonsense guidance that supports real-world solutions.
Complementing the best practices presented in his
book, Software Requirements, Second Edition,
requirements engineering authority Karl Wiegers
tackles even more of the real issues head-on in this
book. With straightforward, professional advice and
practical solutions based on actual project
experiences, this book answers many of the tough
questions raised by industry professionals. From
strategies for estimating and working with customers
to the nuts and bolts of documenting requirements,
this essential companion gives developers, analysts,
and managers the cosmic truths that apply to
virtually every software development project.
Discover how to: « Make the business case for
investing in better requirements practices * Generate
estimates using three specific techniques ¢ Conduct
inquiries to elicit meaningful business and user
requirements ¢ Clearly document project scope
Implement use cases, scenarios, and user stories

Page 23/36



effectively ¢ Improve inspections and peer reviews °
Write requirements that avoid ambiguity

Scenario-Focused Engineering

Provides information on using visual models in the
software engineering process.

Software Engineering at Google

“Companies have been implementing large agile
projects for a number of years, but the ‘stigma’ of
‘agile only works for small projects’ continues to be a
frequent barrier for newcomers and a rallying cry for
agile critics. What has been missing from the agile
literature is a solid, practical book on the specifics of
developing large projects in an agile way. Dean
Leffingwell’s book Scaling Software Agility fills this
gap admirably. It offers a practical guide to large
project issues such as architecture, requirements
development, multi-level release planning, and team
organization. Leffingwell’s book is a necessary guide
for large projects and large organizations making the
transition to agile development.” —Jim Highsmith,
director, Agile Practice, Cutter Consortium, author of
Agile Project Management “There’s tension between
building software fast and delivering software that
lasts, between being ultra-responsive to changes in
the market and maintaining a degree of stability. In
his latest work, Scaling Software Agility, Dean
Leffingwell shows how to achieve a pragmatic balance
among these forces. Leffingwell’s observations of the
problem, his advice on the solution, and his

Page 24/36



description of the resulting best practices come from
experience: he’s been there, done that, and has seen
what’'s worked.” —Grady Booch, IBM Fellow Agile
development practices, while still controversial in
some circles, offer undeniable benefits: faster time to
market, better responsiveness to changing customer
requirements, and higher quality. However, agile
practices have been defined and recommended
primarily to small teams. In Scaling Software Agility,
Dean Leffingwell describes how agile methods can be
applied to enterprise-class development. Part |
provides an overview of the most common and
effective agile methods. Part Il describes seven best
practices of agility that natively scale to the
enterprise level. Part Il describes an additional set of
seven organizational capabilities that companies can
master to achieve the full benefits of software agility
on an enterprise scale. This book is invaluable to
software developers, testers and QA personnel,
managers and team leads, as well as to executives of
software organizations whose objective is to increase
the quality and productivity of the software
development process but who are faced with all the
challenges of developing software on an enterprise
scale.

Business Analysis for Practitioners

"Mastering the Requirements Process: Getting

Requirements Right" sets out an industry-proven
process for gathering and verifying requirements,
regardless of whether you work in a traditional or
agile development environment. In this sweeping

Page 25/36



update of the bestselling guide, the authors show how
to discover precisely what the customer wants and
needs, in the most efficient manner possible.

Software for Dependable Systems

A classic treatise that defined the field of applied
demand analysis, Consumer Demand in the United
States: Prices, Income, and Consumption Behavior is
now fully updated and expanded for a new
generation. Consumption expenditures by households
in the United States account for about 70% of
Americaa__s GDP. The primary focus in this book is on
how households adjust these expenditures in
response to changes in price and income.
Econometric estimates of price and income
elasticities are obtained for an exhaustive array of
goods and services using data from surveys
conducted by the Bureau of Labor Statistics, providing
a better understanding of consumer demand.
Practical models for forecasting future price and
income elasticities are also demonstrated. Fully
revised with over a dozen new chapters and
appendices, the book revisits the original Taylor-
Houthakker models while examining new material as
well, such as the use of quantile regression and the
stationarity of consumer preference. It also explores
the emerging connection between neuroscience and
consumer behavior, integrating the economic
literature on demand theory with psychology
literature. The most comprehensive treatment of the
topic to date, this volume will be an essential
resource for any researcher, student or professional

Page 26/36



economist working on consumer behavior or demand
theory, as well as investors and policymakers
concerned with the impact of economic fluctuations.

Agile Project Management with Kanban

Business Analysis for Practitioners: A Practice Guide
provides practical resources to tackle the project-
related issues associated with requirements and
business analysis—and addresses a critical need in
the industry for more guidance in this area. The
practice guide begins by describing the work of
business analysis. It identifies the tasks that are
performed, in addition to the essential knowledge and
skills needed to effectively perform business analysis
on programs and projects.

Building Evolutionary Architectures

It may surprise you to learn that Microsoft employs as
many software testers as developers. Less surprising
is the emphasis the company places on the testing
discipline—and its role in managing quality across a
diverse, 150+ product portfolio. This book—written by
three of Microsoft’'s most prominent test
professionals—shares the best practices, tools, and
systems used by the company’s 9,000-strong corps of
testers. Learn how your colleagues at Microsoft
design and manage testing, their approach to training
and career development, and what challenges they
see ahead. Most important, you'll get practical
insights you can apply for better results in your
organization. Discover how to: Design effective tests
Page 27/36



and run them throughout the product lifecycle
Minimize cost and risk with functional tests, and know
when to apply structural techniques Measure code
complexity to identify bugs and potential
maintenance issues Use models to generate test
cases, surface unexpected application behavior, and
manage risk Know when to employ automated tests,
design them for long-term use, and plug into an
automation infrastructure Review the hallmarks of
great testers—and the tools they use to run tests,
probe systems, and track progress efficiently Explore
the challenges of testing services vs. shrink-wrapped
software

Software Requirements Engineering

Provides a variety of reusable patterns and situation-
specific frameworks for writing software
requirements.

Business Analysis for Practitioners: A
Practice Guide provides a foundation for
the practical

Great technology alone is rarely sufficient today to
ensure a product's success. At Microsoft, scenario-
focused engineering is a customer-centric, iterative
approach used to design and deliver the deeper
experiences and emotional engagement customers
demand in new products. In this book, you'll discover
the proven practices and lessons learned from real-
world implementations of this approach, including:

Why design matters: Understand a competitive
Page 28/36



landscape where customers are no longer satisfied by
products that are merely useful, but respond instead
to products they crave using. What it means to be
customer focused: Recognize that you are not the
customer, understand customers can have difficulty
articulating what they want, and apply techniques
that uncover their unspoken needs. How to iterate
effectively: Implement a development system that is
flexible enough to respond to early and continuous
feedback, and enables experimentation with multiple
ideas and feedback loops simultaneously. How to
bridge the culture gap: In an engineering environment
traditionally rooted in strong analytics, the ideas and
practices for scenario-focused engineering may not
be intuitive. Learn how to change team mindset from
deciding what a product, service, or device will do, to
discovering what customers actually want and what
will work for them in real-life scenarios. Connections
with Lean and Agile approaches: See the connections,
gaps, and overlaps among the Lean, Agile, and
Scenario-Focused Engineering methodologies, and
achieve a more holistic view of software
development.

Agile Software Development

A USA Today bestseller! Companies like Netflix,
Spotify, and Salesforce are just the tip of the iceberg
for the subscription model. The real
transformation--and the real opportunity--is just
beginning. Subscription companies are growing nine
times faster than the S&P 500. Why? Because unlike
product companies, subscription companies know

Page 29/36



their customers. A happy subscriber base is the
ultimate economic moat. Today's consumers prefer
the advantages of access over the hassles of
maintenance, from transportation (Uber, Surf Air), to
clothing (Stitch Fix, Eleven James), to razor blades
and makeup (Dollar Shave Club, Birchbox).
Companies are similarly demanding easier, long-term
solutions, trading their server rooms for cloud storage
solutions like Box. Simply put, the world is shifting
from products to services. But how do you turn
customers into subscribers? As the CEO of the world's
largest subscription management platform, Tien Tzuo
has helped hundreds of companies transition from
relying on individual sales to building customer-
centric, recurring-revenue businesses. His core
message in Subscribed is simple: Ready or not,
excited or terrified, you need to adapt to the
Subscription Economy -- or risk being left behind.
Tzuo shows how to use subscriptions to build
lucrative, ongoing one-on-one relationships with your
customers. This may require reinventing substantial
parts of your company, from your accounting
practices to your entire IT architecture, but the payoff
can be enormous. Just look at the case studies: *
Adobe transitions from selling enterprise software
licenses to offering cloud-based solutions for a flat
monthly fee, and quadruples its valuation. * Fender
evolves from selling guitars one at a time to creating
lifelong musicians by teaching beginners to play, and
keeping them inspired for life. * Caterpillar uses
subscriptions to help solve problems -- it's not about
how many tractors you can rent, but how much dirt
you need to move. In Subscribed, you'll learn how
these companies madggtégg%shift, and how you can



transform your own product into a valuable service
with a practical, step-by-step framework. Find out how
how you can prepare and prosper now, rather than
trying to catch up later.

Adaptive Code

Most IT systems fail to meet expectations. They don't
meet business goals and don't support users
efficiently. Why? Because the requirements didn't
address the right issues. Writing a good requirements
specification doesn't take more time. This book shows
how ités done - many times faster and many times
smarter. What are the highlights? Two complete real-
life requirements specifications (the traditional and
the fast approach) and examples from many others.
Explanations of both traditional and fast approaches,
and discussions of their strengths and weaknesses in
different project types (tailor-made, COTS, and
product development). Real-life illustrations of all
types of requirements, stakeholder analysis,
cost/benefit and other techniques to ensure that
business goals are met. Proven methods for dealing
with difficult or complex requirements, such as
specifying ease-of-use, or dealing with 200 reports
that might be needed because they are in the old
system. Who is it for? Everyone involved in the
software supply chain, from analysts and developers
to end users, will learn new techniques, benefit from
requirements written by other specialists, and
discover successes and failures from other
companies. Software suppliers will find ideas for
helping customers and writing competitive proposals.

Page 31/36



Programmers and other developers will learn how to
express requirements without specifying technical
details, and how to reduce risks when developing a
system. Students aspiring to IT careers will learn the
theory and practice of requirements engineering, and
get a strong foundation for case studies and projects.
Who is the author? Soren Lauesen is currently
professor at the IT-University of Copenhagen. He has
worked in the IT industry for 20 years and has been a
professor at Copenhagen Business School for 15. He
has been co-founder of three educational and two
industrial development organizations. His industry
projects have encompassed compilers, operating
systems, process control, temporal databases, and
software quality assurance. His research interests
include human-computer interaction, requirements
specification, object-oriented design, quality
assurance, marketing and product development, and
interaction between research and industry. He has a
broad range of other interests ranging from biology to
dancing and foreign cultures.

Software Project Survival Guide

Now in its third edition, this classic guide to software
requirements engineering has been fully updated with
new topics, examples, and guidance. Two leaders in
the requirements community have teamed up to
deliver a contemporary set of practices covering the
full range of requirements development and
management activities on software projects.
Describes practical, effective, field-tested techniques
for managing the requirements engineering process

Page 32/36



from end to end. Provides examples demonstrating
how requirements "good practices" can lead to fewer
change requests, higher customer satisfaction, and
lower development costs. Fully updated with
contemporary examples and many new practices and
techniques. Describes how to apply effective
requirements practices to agile projects and
numerous other special project situations. Targeted to
business analysts, developers, project managers, and
other software project stakeholders who have a
general understanding of the software development
process. Shares the insights gleaned from the
authors’ extensive experience delivering hundreds of
software-requirements training courses,
presentations, and webinars. New chapters are
included on specifying data requirements, writing
high-quality functional requirements, and
requirements reuse. Considerable depth has been
added on business requirements, elicitation
techniques, and nonfunctional requirements. In
addition, new chapters recommend effective
requirements practices for various special project
situations, including enhancement and replacement,
packaged solutions, outsourced, business process
automation, analytics and reporting, and embedded
and other real-time systems projects.

Clean Code

Apply best practices for capturing, analyzing, and
implementing software requirements through visual
models—and deliver better results for your business.
The authors—experts in eliciting and visualizing

Page 33/36



requirements—walk you through a simple but
comprehensive language of visual models that has
been used on hundreds of real-world, large-scale
projects. Build your fluency with core concepts—and
gain essential, scenario-based context and
implementation advice—as you progress through
each chapter. Transcend the limitations of text-based
requirements data using visual models that more
rigorously identify, capture, and validate
requirements Get real-world guidance on best ways to
use visual models—how and when, and ways to
combine them for best project outcomes Practice the
book’s concepts as you work through chapters
Change your focus from writing a good requirement
to ensuring a complete system

System Engineering Analysis, Design,
and Development

The focus of Software for Dependable Systems is a
set of fundamental principles that underlie software
system dependability and that suggest a different
approach to the development and assessment of
dependable software. Unfortunately, it is difficult to
assess the dependability of software. The field of
software engineering suffers from a pervasive lack of
evidence about the incidence and severity of software
failures; about the dependability of existing software
systems; about the efficacy of existing and proposed
development methods; about the benefits of
certification schemes; and so on. There are many
anecdotal reports, which-although often useful for
indicating areas of concern or highlighting promising

Page 34/36



avenues of research-do little to establish a sound and
complete basis for making policy decisions regarding
dependability. The committee regards claims of
extraordinary dependability that are sometimes made
on this basis for the most critical of systems as
unsubstantiated, and perhaps irresponsible. This
difficulty regarding the lack of evidence for system
dependability leads to two conclusions: (1) that better
evidence is needed, so that approaches aimed at
improving the dependability of software can be
objectively assessed, and (2) that, for now, the
pursuit of dependability in software systems should
focus on the construction and evaluation of evidence.
The committee also recognized the importance of
adopting the practices that are already known and
used by the best developers; this report gives a
sample of such practices. Some of these (such as
systematic configuration management and
automated regression testing) are relatively easy to
adopt; others (such as constructing hazard analyses
and threat models, exploiting formal notations when
appropriate, and applying static analysis to code) will
require new training for many developers. However
valuable, though, these practices are in themselves
no silver bullet, and new techniques and methods will
be required in order to build future software systems
to the level of dependability that will be required.

Page 35/36



ROMANCE ACTION & ADVENTURE MYSTERY &
THRILLER BIOGRAPHIES & HISTORY CHILDREN’'S
YOUNG ADULT FANTASY HISTORICAL FICTION
HORROR LITERARY FICTION NON-FICTION SCIENCE
FICTION

Page 36/36


/search-book/romance
/search-book/action
/search-book/mystery
/search-book/mystery
/search-book/bio
/search-book/child
/search-book/young
/search-book/fantasy
/search-book/hisfic
/search-book/horror
/search-book/litfic
/search-book/nonfic
/search-book/scfic
/search-book/scfic
http://tsumobi.com

